Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression.

نویسندگان

  • Carolyn Y Ho
  • Neal K Lakdawala
  • Allison L Cirino
  • Steven E Lipshultz
  • Elizabeth Sparks
  • Siddique A Abbasi
  • Raymond Y Kwong
  • Elliott M Antman
  • Christopher Semsarian
  • Arantxa González
  • Begoña López
  • Javier Diez
  • E John Orav
  • Steven D Colan
  • Christine E Seidman
چکیده

OBJECTIVES The study sought to assess the safety, feasibility, and effect of diltiazem as disease-modifying therapy for at-risk hypertrophic cardiomyopathy (HCM) mutation carriers. BACKGROUND HCM is caused by sarcomere mutations and characterized by left ventricular hypertrophy (LVH) with increased risk of heart failure and sudden death. HCM typically cannot be diagnosed early in life, although subtle phenotypes are present. Animal studies indicate that intracellular calcium handling is altered before LVH develops. Furthermore, early treatment with diltiazem appeared to attenuate disease emergence. METHODS In a pilot, double-blind trial, we randomly assigned 38 sarcomere mutation carriers without LVH (mean 15.8 years of age) to therapy with diltiazem 360 mg/day (or 5 mg/kg/day) or placebo. Treatment duration ranged from 12 to 42 months (median 25 months). Study procedures included electrocardiography, echocardiography, cardiac magnetic resonance imaging, and serum biomarker measurement. RESULTS Diltiazem was not associated with serious adverse events. Heart rate and blood pressure did not differ significantly between groups. However, mean left ventricular (LV) end-diastolic diameter improved toward normal in the diltiazem group but decreased further in controls (change in z-scores, +0.6 vs. -0.5; p < 0.001). Mean LV thickness-to-dimension ratio was stable in the diltiazem group but increased in controls (-0.02 vs. +0.15; p = 0.04). Among MYBPC3 mutation carriers, LV wall thickness and mass, diastolic filling, and cardiac troponin I levels improved in those taking diltiazem compared with controls. Four participants developed overt HCM, 2 in each treatment group. CONCLUSIONS Pre-clinical administration of diltiazem is safe and may improve early LV remodeling in HCM. This novel strategy merits further exploration. (Treatment of Preclinical Hypertrophic Cardiomyopathy With Diltiazem; NCT00319982).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...

متن کامل

The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model.

Dominant mutations in sarcomere protein genes cause hypertrophic cardiomyopathy, an inherited human disorder with increased ventricular wall thickness, myocyte hypertrophy, and disarray. To understand the early consequences of mutant sarcomere proteins, we have studied mice (designated alphaMHC(403/+)) bearing an Arg403Gln missense mutation in the alpha cardiac myosin heavy chain. We demonstrat...

متن کامل

Subtle abnormalities in contractile function are an early manifestation of sarcomere mutations in dilated cardiomyopathy.

BACKGROUND Sarcomere mutations cause both dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM); however, the steps leading from mutation to disease are not well described. By studying mutation carriers before a clinical diagnosis develops, we characterize the early manifestations of sarcomere mutations in DCM and investigate how these manifestations differ from sarcomere mutations...

متن کامل

Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models.

Although most founder mutation carriers of hypertrophic cardiomyopathy (HCM), such as the cardiac myosin-binding protein C gene (MYBPC3), arose from a common ancestor exhibit favorable clinical phenotypes, there still remain small fractions of these carriers associated with increased cardiovascular events. However, few data exist regarding the defining factors that modify phenotypes of these pa...

متن کامل

Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations.

AIMS Disease mechanisms regarding hypertrophic cardiomyopathy (HCM) are largely unknown and disease onset varies. Sarcomere mutations might induce energy depletion for which until now there is no direct evidence at sarcomere level in human HCM. This study investigated if mutations in genes encoding myosin-binding protein C (MYBPC3) and myosin heavy chain (MYH7) underlie changes in the energetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JACC. Heart failure

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2015